Gefördert durch:

Bundesministerium für Digitales und Verkehr

aufgrund eines Beschlusses des Deutschen Bundestages

Prototypical implementation of CAV features at connected traffic lights

29.03.2022

Martin Sommer, M.Sc.

Agenda

- Motivation
- Use Case 1:

Traffic light assistant with automated longitudinal control

• Use Case 2:

Priority request for public transport / emergency vehicles

- Remaining Challenges
- Conclusion & Outlook
- Q&A, Discussion

Motivation

• Motivation:

- Mobility sector is changing rapidly
- Continuously increasing importance of vehicle connectivity and automation (driver assist features, V2X & other connectivity, highly automated driving, OTA)
- Consequence:
 - Ford wants to increase the level of connectivity and automation in its vehicle line-up continuously over the next years

• Need:

- Adoption of algorithms to local market requirements (e.g. to different V2X standards like SAE, ETSI, ...)
- Local testing & validation opportunities are crucial (connected traffic light corridors)
- Simulation based validation gains importance

Source: www.extremetech.com

Use Cases 1 – Traffic Light Assistant

Traffic light assistant with automated longitudinal control

Classic ACC:

- Speed is influenced by leading vehicles speed only
- Speed does not get adopted according to traffic light status
- Reactivation required when resuming from red traffic light

Traffic Light Assistant:

- Speed is additionally influenced by traffic light status and timing
- Speed can be adopted early to pass at green or stop smoothly, even without leading vehicle in front
- System stays active all the time while travelling in straight direction

Test Vehicle

Production line Kuga PHEV

• Modifications:

- Cohda MK5 OBU (reception and forwarding of V2X messages)
- Vodafone C-V2X LTE Router
- o u-Blox GPS receiver
- dSpace MicroAutoBox II (running feature code)
- Power supply, CAN bus connection, additional antennas on the roof

Testing & Validation

• Goals:

- Compatibility of transmitted MAPEM/SPATEM message content with developed algorithms
- Benchmarking of all communication technologies available on connected traffic lights (ITS-G5, 4G via MDM/MQTT/TTS)
- Closed loop feature testing

• Facts:

- >55 days of on-road testing in corridors in Aachen, Kohlscheid & Alsdorf
- >35 h logged data
- > 500 simulated scenarios

Testing & Validation - Results

Slow down to pass at green scenario:

- Vehicle adopts speed early
- Stop can be avoided
- Improved traffic flow, reduced fuel consumption / emissions

Testing & Validation - Results

• Communication Benchmarking

	Range	Latency	Connection stability	Closed Loop Test Findings	Result
Baseline Requirements:	>=300 m	<500 ms	Minimal Packet loss		
ITS-G5 Road-Side-Units	\checkmark	\checkmark	\checkmark	Works well within required range	\checkmark
Cellular Network via MQTT & Vodafone V2X Backend	\checkmark	\checkmark	\checkmark	Works basically well even with 1Hz SPAT frequency, higher SPAT frequency desired to face potential packet loss and edge cases	\checkmark
Cellular Network via MDM & Vodafone V2X Backend	\checkmark	Not evaluated for time reasons			?
C-V2X PC5 Sidelink Direct Communication	Technology not available in test field				?

Use Case 2 – Priority Request

Priority Request for

- Public Transport
- Emergency Vehicles
- Functionality:
 - Vehicle transmits SREM messages to request green light
 - Traffic light turns green when receiving SREMs
 - Traffic light turns back to normal operation after vehicle passed the intersection
- Robust functionality during testing

Remaining Challenges

- Infrastructure related
 - **1)** Infrastructure diversity:

MAPEM + SPATEM msg. content required many iteration loops to achieve the desired content \rightarrow message structures are standardized in ETSI but not the content itself with respect to quality factors and optional fields required for automotive applications

2) Robustness:

All connected traffic light environments and communication paths faced outages.

3) Dynamically timed traffic lights:

Traffic lights with dynamic timing delivered a non-sufficient prediction quality to use it for automation. This caused problems on vehicle side, e.g. phantom braking events for an expected red light which finally did not become reality.

Remaining Challenges

• Vehicle / feature related

1) Queue detection:

Knowing about the traffic lights queue status and length is essential to provide a seamless experience and avoid accelerations for green light with subsequent braking for the queue

2) Vehicle behavior:

Irritation of other road users while braking for a green light that will turn red. Other drivers don't have this information and can become irritated.

3) Conservative vs. progressive system design:

Conservative system = potentially braking for green light vs.

Progressive system = remaining risk to pass at yellow (due to latencies, message drop, GPS inaccuracy etc.)

Conclusion & Outlook

- Local testing & validation opportunities are crucial for a fast feature development process
 - Feature tested successfully in different traffic light corridors using different communication technologies
- A large-scale deployment of vehicles with traffic light related features would require:
 - Increased operational robustness
 - Standardization of message content ("profiling") + quality control processes
 - Increased timing prediction quality
- Merging traffic light based V2X communication and automation:
 - Both direct communication and cellular network-based communication are appropriate if the underlying architecture is designed in the right way
 - High prediction quality is key to get the benefits of the functionality
 - Unsolved challenges with regards to queue detection and informing other drivers

There is a lot of potential but there are also a lot of challenges ahead

Adresse Ford-Werke GmbH Süsterfeldstraße 200 D - 52072 Aachen

Kontakt

ACCorD

Martin Sommer E-Mail: msomme10@ford.com Telefonnummer: +49 (0) 241 9421 375

www.accord-testfeld.de